kMeans

Groups the given data into k clusters, using the k-means clustering algorithm.

  • Use Array.from() and Array.prototype.slice() to initialize appropriate variables for the cluster centroids, distances and classes.
  • Use a while loop to repeat the assignment and update steps as long as there are changes in the previous iteration, as indicated by itr.
  • Calculate the euclidean distance between each data point and centroid using Math.hypot(), Object.keys() and Array.prototype.map().
  • Use Array.prototype.indexOf() and Math.min() to find the closest centroid.
  • Use Array.from() and Array.prototype.reduce(), as well as parseFloat() and Number.prototype.toFixed() to calculate the new centroids.
const kMeans = (data, k = 1) => {
const centroids = data.slice(0, k);
const distances = Array.from({ length: data.length }, () =>
Array.from({ length: k }, () => 0)
);
const classes = Array.from({ length: data.length }, () => -1);
let itr = true;
while (itr) {
itr = false;
for (let d in data) {
for (let c = 0; c < k; c++) {
distances[d][c] = Math.hypot(
...Object.keys(data[0]).map((key) => data[d][key] - centroids[c][key])
);
}
const m = distances[d].indexOf(Math.min(...distances[d]));
if (classes[d] !== m) itr = true;
classes[d] = m;
}
for (let c = 0; c < k; c++) {
centroids[c] = Array.from({ length: data[0].length }, () => 0);
const size = data.reduce((acc, _, d) => {
if (classes[d] === c) {
acc++;
for (let i in data[0]) centroids[c][i] += data[d][i];
}
return acc;
}, 0);
for (let i in data[0]) {
centroids[c][i] = parseFloat(Number(centroids[c][i] / size).toFixed(2));
}
}
}
return classes;
};
Examples;
kMeans(
[
[0, 0],
[0, 1],
[1, 3],
[2, 0],
],
2
); // [0, 1, 1, 0]
Sign for comment

You can write your questions about the subject below.

Login

Your information is only used to display your name and reply by email.

  • M.samet.
    28 Jun 2021 at 12:03 noon
    this message from javascript k-means
  • M.samet.
    28 Jun 2021 at 12:15 noon
    Hi from samuel js k-means